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P R O B L E M  C O N C E R N I N G  T H E  I N J E C T I O N  OF A 
S O L V E N T  I N T O  A P O R O U S  M E D I U M  S U B J E C T E D  
T O  " S C L E R O S I S "  

V. Sh. Shagapov and G. Ya. Khusainova UDC 536.532 

The problem on injecting a soh,ent into a porous medium clogged up because of the deposition of a 
solid phase (paraffins, bitumens) is considered. Within the .fi'amework of the schemes of plane-one-di- 
mensional and radial-symmetric filtration, self-similar solutions are obtained that describe the distribu- 
tions of  density and velocity as well as evolution of  a cleaned zone. Numerical evaluations are 
presented for a quanti~, which detetwzines the laws of motion of the cleaned zone boundatw, as function 
of the parameters of the stratum and the injected soh,ent. 

One of the most widespread reasons for worsening collector characteristics of the stratum in the well- 
bottom zone of oil wells are "sclerotic" changes because of the deposition of a solid phase (for example, par- 
affins) onto the walls of pore channels. In most cases, these depositions can be removed by injecting a solvent. 
Evaluations required to perform technological calculations using a solvent can be obtained from solutions of 
plane-one-dimensional and radial-symmetric problems. In particular, if the radial-symmetric formulation makes 
it possible to analyze the cleaning of a porous medium around the well, the plane-one-dimensional problem 
provides the possibility of tracing these processes near the racks (formed, for example, in hydraulic fracturing). 
Certain aspects of the displacement of a hydrocarbon liquid from porous media by means of solvents are con- 
sidered in [1, 2]. 

Basic Equations.  Suppose that a medium with porosity m in the initial state is partially clogged up by 
a solid phase which is dissolved in the injected liquid. In the initial state the volume fraction occupied by the 
solid phase is equal to v, and therefore the "living" porosity is m" = ( 1 -  v)m. Moreover, the clogged porous 
medium in turn is saturated with the liquid. In the injection of a solvent into this system one can single out 
three characteristic zones: a near porous medium cleaned from the solid phase (with porosity m) where a pure 
solvent is present in pores, an intermediate zone (with porosity m') in which the solvent, saturated with the 
solid phase, is filtered, and a distant zone where the filtration flow of the initial saturating liquid occurs. It 
should be noted that according to the concepts adopted, these zones contain three dissimilar liquids that differ 
in viscosity and equilibrium values of density. We will assume that filtration processes during the solvent in- 
jection occur under elastic conditions. Then the linear equation of piezoconductivity and Darcy's law can be 
written in the form 

Opi 1 a (  api l ki 3pi 
l "n ~F ~1" ) Ui = mi  vi ~i ~I" 

(1) 

k i 
)~i - ~t i ~i ' ~i = mi  ~liqi + ~si' 

m l = m ,  m 2 = m 3 = m ' = m ( 1 - v  ) ,  k2=k 3. 
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Here n = 0 and 1 correspond to the plane-one-dimensional and radial-symmetric problems. 
The assumptions adopted above for the structure of the zones actually ignore the extension of the re- 

gions in which the solid phase is dissolved and washed off. Thereby these regions are replaced by fracture 
surfaces for a part of the variables (for example, the filtration rate) and parameters that determine the filtration 
characteristics (porosity, permeability, and viscosity). Moreover, hereafter we will ignore the hydraulic resis- 
tance in these regions, and at the boundaries between the zones we will require the fulfillment of the condition 
for continuity of pressure: 

Pl = P2 = P(12) (r = I(12))  , P2 = P3 = P(23) (r = r(23) ) . 

As a whole, from the mass conservation law for the entire solvent-solid phase system at the boundary 
between the first and second zones it follows that 

dr"2)') ( _d"(12)/_ d"('2) (,- (2) 
Pl nil Vl -- - - 7 )  = P2/'t12 V2 d t )  psmv ~ = F(12)) ' 

where Ps is the solid-phase density. We also write the equation of mass conservation of the solvent at this 
boundary as 

Plm,  v I dr(le)-'d7 = ( l - g )  p2m21v2----~ I (r=r(12))" 

here g is the mass concentration of the solid phase in the solvent in the saturation state. Formulas (2) and (3) 
are written in a linearized approximation, and their equilibrium values are taken tor the liquid densities. We 
note also that allowance for the change in the densities due to the pressure increase compared to the equilib- 
rium value will introduce an error of the order of Api << 1 (Api = A p i / P i ,  AOi is the maximum change in the 
density because of compression). Relations (2) and (3) with account for Darcy's law from Eq. (1) can be rep- 
resented in the form 

kl 3Pl k2 c3P2 dr(12) 
P lg l  3r P2!a 2 3 1 ~ = m ( P 2 ( 1 - v ) + p s V - P z )  d---~ 

k~ 3p2 dr(12) ( r= i"( 
131 ~1 lkl 3P131" (1 - g )  P2 ~" 31" - m ( ( 1 -  g)p2 ( 1 -  v) - pl)--- ~ 12))" 

In what follows, for convenience, these expressions will be transformed in the following manner: 

k I 3 p l  ( 1 - g )  psv+gpl  dr(12) 
- - - -  /71 

gl 31" gPl dt 

k2 3P2 gP2 (1 - v) + psv dr02 ) 
g2 3r m gP2 dt ( r=  r(12)). 

(4) 

We assume that at the boundary between the second and third zones there is the condition for immis- 
cible displacement, from which it is seen that this boundary is also the surface of contact fracture. Then we 
write 

92m2 P3m3 - - - - ~ )  = 

Hence with account for Darcy's law from Eq. (1), we have 

0 (1"=r(23)). 
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k2 c)P2 k30P3 . dr(23) 
- -  - - v ;  - - - d r -  ( r  = " ( 2 3 > )  • P-2 0r g3 01" = - m  (1 (5) 

In the case of the absence of solid depositions in the initial state (v = 0), it follows that the interme- 
diate region will be absent (r(12) = r(23)), and then we obtain the well-known results [3]. 

If, for the dependences of the coefficients of absolute permeability on the "living" porosity, we take the 
Kozeny-von K~rn~.n formulas, then it is possible to write 

3 3 m m (1 - v) 3 (6) 
kl = ko ~ , k2 = k3 = ko o ; 

( l - m ) -  ( 1 - m  (1-v) ) -  

here k0 is the parameter responsible for the characteristic dimensions of the pores. 
Plane-One-Dimensional Problem (n = 0, r = x). Suppose that the solvent injection occurs on sudden 

increase in the pressure from the initial value in the porous medium P0 to a certain constant value Pe at its 

boundary (Pe >Po): 

p3=Po (x>O,  t=O) ,  pl=pe (x=O,  t>O) .  (7) 

This problem has the following self-similar solution: 

Pl =Pe + (P(12) -Pe) 

exp d{ 
0 

9( t21 '4) ; exp - d~' 
0 

(o<{<~,.2>), 

I exp d~' 

, ~ 12) P2=P(I2)+(P(23)--P(12))~-3) ~I 
~(12) 

f exp - d~' 
. {(23) ~ 43]3 ) Pg=P(23)-I-(Po--P(23)) • ( S~31 

f exp dE' 

~(231 

(~(23> < ~ < oo), 

=x/~x~t, rli= ;~i/Z1 (i = 2, 3).  

Using this solution and boundary conditions (4) and (5), we can write the following system of transcendental 
equations for determining in self-similar variables the coordinates of the boundaries ~(~2) and ~(23) between the 
zones and the values of the pressures P(12) and P(23) at these boundaries: 

kl (P(12) -Pe) exp (-  ~12)/4) (t - g) 9sv + gPl ~(12) 

0 
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2 
k2 (P(23) -P(12))  exp ( -  ~(12)/4q2) 

g2 
I exp d~ 

gP2(1 - v) + PsV ~(12) 
- - m  XI gP2 2 

k2 (P(23)-P(12)) exp ( - ~ 2 3 ) / 4 n 2 )  k3 (Po-P(23)) exp ( -  ~23)/4n3) 

ill. 2 ~{23) /" ,2 "~ ~J'3 

j" exp [-3£-[.g' 
~,,:, [ 4rl2) 

exp d~ 

~(23) 

~(23) 
= - m  (1 -v)X1 2 

From this system it is easy to obtain two equations for determination o f  ~(12) and ~(23) as functions of  the 

pressure drop Ap(Ap = Pe - P0): 

2 9 gP2(  1 - V )  + P s v  ~(12)  
g exp [(~(23) - ~[12))/4T12] - P2 (1 - v) ~(23) ' 

(1-g) PsV+gpll-tl |,¢12)/ t [_, J 
gPl kl  (12) exp I) exp 'T 

f e x p  [ _ ~ - - ~ - - ] d ~  ' _ 
- ["4'112 ) ~ e l  ( 4 1 1 2 )  

g3 -- ( l -- V) ~(23) ~ exp exp d~" = - 2 Ap 
- [ q"[]3 ,] {¢23) m~l  

(8) 

Here the pressures at the boundaries between the zones can be found from the following expressions: 

1 btl 
P(12) =Pe - ~ ~ ~(12) ~1 m (1-g) PsV+gPlexp[~J!gPl exp d~ ' ,  

P(23)=Po+-~-~3m (1 - v )  XI ~(23) exp I exp 

On the basis of  the solutions obtained, we carried out numerical calculations for a system in which 
kerosene is a solvent and bi tumen is a soluble solid phase. For this system at temperatures T = 291 and 343 
K using the Kendall  formula and the data of  [4], we have tile following values of  the parameters:  g = 0.6 and 
0.9, [al = 0.00137 and 0.0007 Pa.sec, ~t2 -- 0.00745 and 0.00093 Pa.sec, I.t3 = 0.09391 and 0.011 Pa.sec, 
Pl = 92 = 900 kg/m 3, and P3 = 700 kg/m 3. For the characteristics of  the porous medium we take values o f  the 
parameters that are equal to m = 0.3, kl = 10 -12 m 2, and v = 0.5. Then, according to Eqs. (1) and (6), we have 

m2 = m3 = 0.15 and k2 = k3 = 8.48'10 -14 m 2. Using the above values of  the parameters  of  the liquid and the 
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Fig. 1. Dependences of the parameters ~(12) (solid curve) and ~(23) (dashed 
curve) on the pressure drop under the influence of the degree of clogging 
(a) and the solvent (b) on the evolution of motion of the cleaned zone 
boundary (a, 1 and 2 correspond to v = 0.1 and 0.5; b, 1 and 2 for g = 
0.9 and 0.6, v = 0.5). Ap, Pa. 
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Fig. 2. Distribution of the pressure near the boundary of the porous me- 
dium through which the solvent is injected (the inset illustrates the pres- 
sure distribution in the first and second zones in magnified form; the 
parameters of  the stratum and the solvent are the same as for Fig. 1). p, 

MPa, x, m. 

porous medium in different zones, for the coefficients of  piezoconductivity we obtain Zl = 3.8 and 7.45 m2/sec, 
Z2 = 0.06 and 0.45 m2/sec, and X3-'-0.004 and 0.032 mZ/sec. 

Figure 1 presents the dependences of the dimensionless parameters ~12) and ~23) that determine the 
boundaries of the cleaned zone and the displaced liquid on the pressure drop Ap(Ap = P e - P 0 )  at different 
values of the volume fraction, occupied by the solid phase (v = 0.1 and 0.5), and the equilibrium mass con- 
centration of the solid phase in the solvent (g = 0.6 and 0.9). As follows from the figures, the boundary of  the 
cleaned zone moves more quickly, the less the stratum is clogged up and the "stronger" the solvent. 

Figure 2 illustrates the pressure profile 1 h later after the onset of the solvent injection (g = 0.6) into 
the stratum (v = 0.5). It is seen that the basic pressure drop occurs in the uncleaned zone of the stratum. 

In most cases the following evaluations are observed: 

Ps ~ 1 P2 1 P3 1 g (1 - v )  

Pl Pl Pl g ( 1 - v ) + v  

k, k 3 B 2 - 1 ,  la--23 - 1 - ~ 1  1 1 1 
, , , n 2 -  , n 3 -  • 

Then for the solutions satisfying the conditions 

~(12) << 1, ~(23) << 1, (9) 
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we obtain 

gP2 (1 - v )  P3 ~/ ~(23) = 2 Z~O (1 O) 
~(12) = gp2 ( 1 -  V)+  psV ~(23), (1 - V) "~3 r13~ m)~----~ " 

The second equation of (10) yields 

: I 
- m la3 ( 1 - v )  

From this one can see that solutions (10) and (1 1) for ~(12) and ~(23) satisfy conditions (9) at a rather weak 
pressure drop: 

Ap < < ~  Xl I-q - v  k--~ m .  

In this case, in the first and second zones we have the quasistationary profiles of the pressure distribution that 
are determined by the following formulas: 

Pl =Pc + (P(12) -Pe)  ~z2) 

-- ~(12) 
P2 =/9(12) + (P(23) --/)(12)) ~(23) -- ~(12) (~(12) < ~ < ~(23)) , 

while for the values of the pressures at the boundaries between the zones we have 

1 ktl (1 - g )  psV + gpl 
P(12) = Pe - ~ ~ Z1 m ~12) , 

gPl (12) 

p( ,~)=pe- -~Xl~ . lm ' +[a2 
_L gPl Ptl k2 gP2 g p 2 ( l - V )  ~(12)" 

It should be noted here that the simple formulas (10)-(12) obtained for the basic characteristics of the first 
(cleaned) zone in the majority of cases (from the viewpoint of  practical applications) hold true valid in a rather 
wide range of parameters for the initial porous medium and the solvent, and also for the pressure drop Ap. 

Radial-Symmetric  Problem (n = 1). From a certain instant of time, the problem for the case of sol- 
vent injection with a constant volumetric flow rate per unit length of the well also has the self-similar solution. 
Here the corresponding initial and boundary conditions will be written in the foma 

p3=P0 ( t = O ,  r > O ) ,  

2 ~ r w  ; q  (r>0, rw~0).  
"w 

The solution similar to (7) appears as 

Pl =p(12) + ~  J %'- exp  ~ 4 ) (0<~<~(12) ) '  
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I exp 
.~,~> (4112) 

P2=Po2' + (P(23'-P02)''--~3~'-~ (- "~I 
.[ exp d~" (13) 

P3 = P(23) - 

, ,  , 
(P(23) - PO) I exp d~' 

~(23~ 

i ~'-'exp(- ~21d~' 
4r13) 

~(23) 

(~(23) < ~ < o~), 

^ q g~ 
q -  

2~ kl " 

Using boundary conditions (4) and Eqs, (13), we write 

kl A (1 - g) PsV + gPl ~(12) 
- -  q e x p  = m XI - -  
g l  g P l  2 

(])(23) -- P(12)) exp I -  - 7 - !  
k2 ~, 4rl2) gP2 (1 - v )  +Ps v ~(12) 

= -- m )~1 2 
i p-I e x p -  d ~ '  {,,2, ~ 4132 ) 

(14) 

k2 
~2 

(P(23)-P(I2)) exp l -  4rl---7_ j 
k3 

(P0-P(23)) exp ~ )  

- - m  (1 - v )  x1 2 
~(23) _ 1 

g<12> ~. 4rl2) 

g3 
exp 

~,,:~> (4113) 

Hence for determining ~(12) and ~(23) we have 
,) 

~23) - ~12) gP2 (1 - V) + PsV 
 exp i ' 

~(12) e xp/--~-- j =  2p~ 
A qg kl 

m ((I - g) psv + gPl) btl 

By means of the last equation from system (14) we find the pressures between the zones: 

(15) 
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Fig. 3. Dependences of the boundaries of the cleaned zone (solid curve) 
and the displaced liquid (dashed curve) on the flow rate of the injected 
solvent with different initial clogging-up (determined by v) of the porous 
medium (a) and on the quality of the solvent (determined by g) (b) (the 
numbering of the curves is the same as in Fig. 1). q, m3/(m-sec). 

ltl3 ~23) 
P (23)=P°+(1-V)mX1 k 3 2 - -  - -  exp 

"2 ~i3) P(12) = P(23) + mXl (1 - v) ~2 - -  expl | f ~'-' exp 
~4rl2 ) ~;2 , 4q2 

(16) 

Figure 3 presents the calculation results for the dependences of the dimensionless boundaries of the 
cleaned zone and the displaced liquid on the volumetric flow rate of the injected solvent with different initial 
clogging-up of the stratum (a) as well as on the resolving power of the liquid (b) injected into the stratum. It 
can be seen that the weaker the stratum is clogged up, the smaller the distance between the boundaries of the 
two zones. 

For the roots of Eqs. (15) satisfying the conditions ~(t2) << 1 and ~i23) << 1, we have 

k, g q p, p2_(l -v_) +_psv 
~(12) ---- 2 ' ,  ~(23) = ~(12) )-  (17) 

pq ((1 --g) psV +gP2) m 

Using the asymptotics for the integral exponential function at small values of the argument (x << 1) 

- Ei ( -  x) = In 1 _ 0.5772, 
x 

from expressions (16) for the pressures between the zones we can obtain 

G'(ln / k 3 Z l - - /  ~ - 0 . 5 7 7 2  , 
4 ~. ~(23) ) 

P(12) = P(23) + (1 - V) ~ zlm T 
- ~ ~('12) ) 

Here for the pressure distribution we have 

 l: 12+2 'nt V / 
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P2 =P(12) + (P(23) -P(12)) 

P3 = P(23) + (Po - P(23)) 
In ( ~ - L  - 0.5772] 

(23) ) 

(~(23) < ~ ,  ~ < < 1 ) .  

These solutions hold true at rather weak flow rates of injection that satisfy the condition 

q << q . ,  q, - 
rc ((l - g) PsV + gP2) El m 

Pl g 

N O T A T I O N  

Pi, pressure in the ith zone, Pa; P(12), pressure at the boundary of the first and second zones, Pa; P(23), 
pressure at the boundary of the second and third zones, Pa; T, temperature, K; t, time, h; r, distance, m; rw, 
radius of the well; r(12), boundary of the first zone, m; r(23), boundary of the second zone, m; v, volume frac- 
tion occupied by the solid phase; vi, true velocity, m/sec; ui, filtration rate, m/sec; mi, coefficient of porosity in 
the ith zone; ki, coefficient of permeability in the ith zone, m2; I]liqi and 13si, coefficients of elastic capacity of 
the liquid and the stratum in the ith zone, Pa-J; ~t i, dynamic viscosity, Pa.sec; Xi, coefficient of piezoconduc- 
tivity, m2/sec; Pl, density of the solvent, kg/m3; P2, density of the mixture, kg/m3; ~(12) and ~(23), dimensionless 
serf-similar variables; q and q,, flow rate and critical flow rate of the solvent per unit length of the well, 
m3/(sec.m). Subscripts: i = 1, 2, 3, values of the parameters corresponding to the 1st, 2nd, and 3rd zones; liqi, 
liquid in the ith zone; si, porous medium where filtration flow occurs; s, skeleton; 0, initial value; e, equilib- 
rium state; w, well. 
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